游客
题文

⊙O1和⊙O2的极坐标方程分别为=4cos,=-4sin.
(1)把⊙O1和⊙O2的极坐标方程化为直角坐标方程;
(2)求经过⊙O1,⊙O2交点的直线的直角坐标方程.

科目 数学   题型 解答题   难度 中等
知识点: 坐标系
登录免费查看答案和解析
相关试题

已知函数.
(1)若直线是函数的图像的一条对称轴,求的值;
(2)若,求的值域.

已知函数).
(Ⅰ)当时,求函数的图象在点处的切线方程;
(Ⅱ)当时,记函数,试求的单调递减区间;
(Ⅲ)设函数(其中为常数),若函数在区间上不存在极值,求的最大值.

已知抛物线的焦点为,抛物线上存在一点到焦点的距离为,且点在圆上.
(Ⅰ)求抛物线的方程;
(Ⅱ)已知椭圆的一个焦点与抛物线的焦点重合,且离心率为.直线交椭圆两个不同的点,若原点在以线段为直径的圆的外部,求的取值范围.

如图,在正四棱台中,分别是的中点.

(Ⅰ)求证:平面∥平面
(Ⅱ)求证:平面.
注:底面为正方形,从顶点向底面作垂线,垂足是底面中心,这样的四棱锥叫做正四棱锥.用一个平行于正四棱锥底面的平面去截该棱锥,底面与截面之间的部分叫做正四棱台.

已知向量,,实数为大于零的常数,函数,,且函数的最大值为.
(Ⅰ)求的值;
(Ⅱ)在中,分别为内角所对的边,若,且,,求的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号