如图所示,粒子源S可以不断地产生质量为m、电荷量为+q的粒子(重力不计)。粒子从O1孔漂进一个水平方向的加速电场(初速不计),再经小孔O2进入相互正交的匀强电场和匀强磁场区域,电场强度大小为E,磁感应强度大小为B1,方向如图。虚线PQ、MN之间存在着水平向右的匀强磁场,磁场范围足够大,磁感应强度大小为B2。一块折成直角的硬质塑料片abc(不带电,宽度、厚度都很小可以忽略不计)放置在PQ、MN之间,截面图如图,a、c两点分别位于PQ、MN上,ab=bc=L,α= 45º。粒子能沿图中虚线O2O3的延长线进入PQ、MN之间的区域。
(1)求加速电压U1;
(2)假设粒子与硬质塑料板相碰后,速度大小不变,方向变化遵守光的反射定律,那么粒子与塑料片第一次相碰后到第二次相碰前做什么运动?
(3)粒子在PQ、MN之间的区域中运动的总时间t和总路程s分别是多少?
(1)在光电效应试验中,某金属的截止频率相应的波长为
,该金属的逸出功为。若用波长为
(
)单色光做实验,则其遏止电压为。已知电子的电荷量,真空中的光速和布朗克常量分别为
,
和
。
(2)如图,
三个木块的质量均为
。置于光滑的水平面上,
之间有一轻质弹簧,弹簧的两端与木块接触可不固连,将弹簧压紧到不能再压缩时用细线把
紧连,是弹簧不能伸展,以至于
可视为一个整体,现
以初速
沿
的连线方向朝B运动,与
相碰并粘合在一起,以后细线突然断开,弹簧伸展,从而使
与
分离,已知
离开弹簧后的速度恰为
。求弹簧释放的势能。
(1)一振动周期为
,振幅为
,位于
点的被波源从平衡位置沿
轴正向开始做简谐震动,该波源产生的一维简谐横波沿
轴正向传播,波速为
,传播过程中无能量损失,一段时间后,该震动传播至某质点
,关于质点
振动的说法正确的是。
A.振幅一定为
B.周期一定为
C.速度的最大值一定为
D.开始振动的方向沿
轴向上或向下取决去它离波源的距离
E.若
点与波
,则质点
的位移与波源的相同
(2)一半圆柱形透明物体横截面如图所示,地面
镀银,(图中粗线)
表示半圆截面的圆心一束光线在横截面内
,角
,角
。求
(1)光线在
点的折射角
(2)透明物体的折射率
(1)对于一定量的理想气体,下列说法正确的是()。
A. |
若气体的压强和体积都不变,其内能也一定不变 |
B. |
若气体的内能不变,其状态也一定不变 |
C. |
若气体的温度随 |
D. |
气体温度每升高1K所吸收的热量与气体经历的过程有关 |
E. |
当气体温度升高时,气体的内能一定增大 |
(2)如图,一上端开口,下端封闭的细长玻璃管,下部有长
的水银柱,中间封有长
的空气柱,上部有长
的水银柱,此时水银面恰好与管口平齐。已知大气压强为
。如果使玻璃管绕低端在竖直平面内缓慢地转动一周,求在开口向下和转回到原来位置时管中空气柱的长度。封入的气体可视为理想气体,在转动过程中没有发生漏气。
(1)下列说法中正确的是()
A.光电效应是原子核吸收光子向外释放电子的现象
B.一群处于n=3能级激发态的氢原子,自发跃迁时能发出3种不同频率的光
C.放射性元素发生一次β衰变,原子序数增加1
D.汤姆生通过α粒子散射实验建立了原子的核式结构模型
(2)如图所示,滑块A质量为2m,滑块B质量为m,滑块C的质量为0.5m,开始时,A、B分别以v1,v2的速度沿光滑水平轨道向固定在右侧的挡板运动,现将C无初速度的放在B上,并与B粘合不再分开,此时A与B相距较近,B与挡板相距足够远。若B与挡板碰撞后以原速率返弹,A与B碰撞后粘合在一起,为使B能与挡板碰撞两次,v1、v2应满足什么关系?
(1)2011年4月17日,我国首架歼—20隐形战机再次成功试飞,其最大的飞行速度可以达到2马赫(即2倍音速)。隐形飞机外形设计采用多棱折面,同时表面还采用吸波涂料,使被反射的雷达信号尽可能弱,从而达到隐身的目的。下列说法中正确的是()
A.战机采用了隐形技术,不能反射电磁波,因此用肉眼不能看见 |
B.涂料隐形技术利用了干涉原理,对某些波段的电滋波,涂料膜前后表面反射波相互抵消 |
C.战机速度超过音速,不能用超声波雷达来探测 |
D.当敌机靠近时,战机携带的雷达接收的反射波的频率小于发射频率 |
(2)如图所示,一不透明的圆柱形容器内装满折射率n =的透明液体,容器底部正中央O点处有一点光源S,平面镜MN与底面成45°角放置,若容器高为2dm,底边半径为(1+
)dm,OM = 1dm,在O点正上方离容器底部3 dm 处水平放置一足够长的刻度尺,求光源 S 发出的光线经平面镜反射后,照射到刻度尺的长度。(不考虑容器侧壁和液面的反射)