某校高中部,高一有6个班,高二有7个班,高三有8个班,学校利用星期六组织学生到某厂进行社会实践活动.
(1)任选1个班的学生参加社会实践,有多少种不同的选法?
(2)三个年级各选一个班的学生参加社会实践,有多少种不同的选法?
(3)选2个班的学生参加社会实践,要求这2个班不同年级,有多少种不同的选法?
已知定义在R上的函数,
为常数,且
是函数
的一个极值点.
(Ⅰ)求的值;
(Ⅱ)若函数,
,求
的单调区间;
(Ⅲ) 过点可作曲线
的三条切线,求
的
取值范围
调查某初中1000名学生的肥胖情况,得下表:
偏瘦 |
正常 |
肥胖 |
|
女生(人) |
100 |
173 |
![]() |
男生(人) |
![]() |
177 |
![]() |
已知从这批学生中随机抽取1名学生,抽到偏瘦男生的概率为0.15。
(1)求的值;
(2)若用分层抽样的方法,从这批学生中随机抽取50名,问应在肥胖学生中抽多少名?
(3)已知,
,肥胖学生中男生不少于女生的概率。
数列的前
项和记为
,
,点
在直线
上,
.
(Ⅰ)当实数为何值时,数列
是等比数列?
(Ⅱ)在(Ⅰ)的结论下,设,
是数列
的前
项和,求
的值.
已知函数的最大值为
,小正周期为
.
(Ⅰ)求:的解析式;
(Ⅱ)若的三条边为
,
,
,满足
,
边所对的角为
.求角
的取值范围及函数
的值域.
在区间和
分别各取一个数,记为m和n,求方程
表示焦点在x轴上的椭圆的概率.