已知关于x的方程x2-(6+i)x+9+ai="0" (a∈R)有实数根b.(1)求实数a,b的值;(2)若复数z满足|-a-bi|-2|z|=0,求z为何值时,|z|有最小值,并求出|z|的最小值.
已知是椭圆上的点,求的取值范围.
已知椭圆的左、右焦点分别是,离心率为.直线与轴,轴分别交于点是直线与椭圆的一个公共点,是点关于直线的对称点.设. (Ⅰ)证明; (Ⅱ)若,的周长为,写出椭圆的方程; (Ⅲ)确定的值,使得是等腰三角形.
设点到,距离之差为,到轴,轴距离之比为,求的取值范围.
如果直线与双曲线两支各有一个交点,求的取值范围.
已知椭圆的中心在原点,焦点在轴上,右准线的方程为,倾斜角为的直线交椭圆于两点,且的中点坐标为,设为椭圆的右顶点,为椭圆上两点,且,,三者的平方成等差数列,则直线和斜率之积的绝对值是否为定值,若是,请求出定值;若不是,请说明理由.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号