如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,E、F分别为D1D、BD的中点,G在棱CD上,且,H为C1G的中点,试建立适当的坐标系,写出E、F、G、H点的坐标.
(本小题满分14分)已知离心率为的椭圆
与直线
相交于
两点(点
在
轴上方),且
.点
是椭圆上位于直线
两侧的两个动点,且
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)求四边形面积的取值范围.
(本小题满分13分)已知函数.
(Ⅰ)若x=1是的极值点,求a的值:
(Ⅱ)当时,求证:
.
(本小题满分13分)
已知公比为的等比数列
中,
,前三项的和为
.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,设数列
满足
,
,求使
的
的
最小值.
(本小题满分14分)如图,在四棱锥中,底面
是正方形,
平面
.点
是线段
的中点,点
是线段
上的动点.
(Ⅰ)若是
的中点,求证:
//平面
;
(Ⅱ)求证:;
(Ⅲ)若,
,当三棱锥
的体积等于
时,试判断点
在边
上的位置,并说明理由.
(本小题满分13分)设集合由满足下列两个条件的数列
构成:
①②存在实数
,使
.(
为正整数)
(Ⅰ)在只有项的有限数列
,
中,其中
,
,
,
,
,
,
,
,
,
,试判断数列
,
是否为集合
的元素;
(Ⅱ)设是等差数列,
是其前
项和,
,
,证明数列
;并求出
的取值范围.