某高校在2011年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.
(1)分别求第3,4,5组的频率;
(2)若该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试.
① 已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙同时进入第二轮面试的概率;
② 学校决定在这6名学生中随机抽取2名学生接受考官的面试,设第4组中有X名学生被考官面试,求X的分布列和数学期望.
已知函数(
),其图象相邻两条对称轴之间的距离等于
.
(1)求的值;
(2)当时,求函数
的最大值和最小值及相应的
值.
如图,在平面直角坐标系中,
、
分别是椭圆
的顶点,过坐标原点的直线交椭圆于
、
两点,其中
在第一象限.过
作
轴的垂线,垂足为
.连接
,并延长交椭圆于点
.设直线
的斜率为
.
(Ⅰ)当直线平分线段
时,求
的值;
(Ⅱ)当时,求点
到直线
的距离;
(Ⅲ)对任意,求证:
.
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若在
内恒成立,求实数
的取值范围.
定义在上的函数
同时满足以下条件:①函数
在
上是减函数,在
上是增函数;②
是偶函数;③函数
在
处的切线与直线
垂直.
(Ⅰ)求函数的解析式;
(Ⅱ)设,若存在
使得
,求实数
的取值范围.