如图所示,在△ABO中,=
,
=
,AD与BC相交于点M,设
=a,
=b.试用a和b表示向量
.
已知函数(其中
,
,
)的最大值为2,最小正周期为
.
(1)求函数的解析式;
(2)若函数图象上的两点
的横坐标依次为
,
为坐标原点,求
的值.
如图,线段的两个端点
、
分别分别在
轴、
轴上滑动,
,点
是
上一点,且
,点
随线段
的运动而变化.
(1)求点的轨迹方程;
(2)设为点
的轨迹的左焦点,
为右焦点,过
的直线交
的轨迹于
两点,求
的最大值,并求此时直线
的方程.
已知函数。
(1)若在
处取得极值,求
的值;
(2)求的单调区间;
(3)若且
,函数
,若对于
,总存在
使得
,求实数
的取值范围。
设双曲线的顶点为,该双曲线又与直线
交于
两点,且
(
为坐标原点)。
(1)求此双曲线的方程;
(2)求
如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.
(Ⅰ)求证AM//平面BDE;
(Ⅱ)求二面角A-DF-B的大小;
(Ⅲ)试在线段AC上确定一点P,使得PF与BC所成的角是60°.