在△ABC中,设A、B、C的对边分别为a、b、c,向量m=(cosA,sinA),n=(-sinA,cosA),若|m+n|=2.
(1)求角A的大小;
(2)若b=4,且c=
a,求△ABC的面积.
如图,已知二面角的大小为
,菱形
在面
内,
两点在棱
上,
,
是
的中点,
面
,垂足为
.
(1)证明:平面
;
(2)求异面直线与
所成角的余弦值.
如图,在三棱锥中,平面
平面
,
为等边三角形,
且
,
,
分别为
,
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面平面
;
(Ⅲ)求二面角的平面角的余弦值..
已知圆与两平行直线
和
相切,圆心在直线
上.
(1)求圆的方程;
(2)过原点做一条直线,交圆
于
两点,求
的值.
如图,长方体中,
,点
分别在
上,
,过点
的平面
与此长方体的面相交,交线围成一个正方形.
(1)在图中画出这个正方形(不必说明画法与理由).
(2)求平面把该长方体分成的两部分体积的比值.
已知正方形ABCD的中心M(-1,0)和一边CD所在的直线方程为x+3y-5=0,求其他三边所在的直线方程.