设a=,b=(4sinx,cosx-sinx),f(x)=a·b.
(1)求函数f(x)的解析式;
(2)已知常数>0,若y=f(
x)在区间
上是增函数,求
的取值范围;
(3)设集合A=,B={x||f(x)-m|<2},若A
B,求实数m的取值范围.
在中,角
所对的边分别是
,已知
.
(Ⅰ)若的面积等于
,求
;
(Ⅱ)若,求
的面积.
如图,已知椭圆(a>b>0)的离心率
,过点A(0,-b)和B(a,0)的直线与原点的距离为
.
(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
在正方体中,如图E、F分别是
,CD的中点,
(1)求证:;
(2)求.
已知:等差数列{}中,
=14,前10项和
.
(Ⅰ)求;
(Ⅱ)将{}中的第2项,第4项,…,第
项按原来的顺序排成一个新数列,求此数列的前
项和
.
抛物线的顶点在原点,它的准线过双曲线的一个焦点,并与
双曲线的实轴垂直,已知抛物线与双曲线的交点为,求抛物线的方程和双曲线的方程.