已知函数f(x)=x3-ax2-3x.
(1)若f(x)在区间[1,+∞)上是增函数,求实数a的取值范围;
(2)若x=-是f(x)的极值点,求f(x)在[1,a]上的最大值;
(3)在(2)的条件下,是否存在实数b,使得函数g(x)=bx的图象与函数f(x)的图象恰有3个交点,若存在,请求出实数b的取值范围;若不存在,试说明理由.
如图,四棱锥 中, 底面 , , , , 为线段 上一点, , 为 的中点.
(1)证明: 平面 ;
(2)求直线 与平面 所成角的正弦值.
如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
注:年份代码 分别对应年份 .
(Ⅰ)由折线图看出,可用线性回归模型拟合 与 的关系,请用相关系数加以证明;
(Ⅱ)建立 关于 的回归方程(系数精确到 ,预测2016年我国生活垃圾无害化处理量.
附注:
参考数据: , , , .
参考公式:相关系数 ,
回归方程 中斜率和截距的最小二乘估计公式分别为:
, .
已知数列 的前 项和 ,其中 .
(1)证明 是等比数列,并求其通项公式;
(2)若 ,求 .
已知函数 .
(Ⅰ)在图中画出 的图象;
(Ⅱ)求不等式 的解集.
在直角坐标系 中,曲线 的参数方程为 为参数, .在以坐标原点为极点, 轴正半轴为极轴的极坐标系中,曲线 .
(Ⅰ)说明 是哪种曲线,并将 的方程化为极坐标方程;
(Ⅱ)直线 的极坐标方程为 ,其中 满足 ,若曲线 与 的公共点都在 上,求 .