甲、乙两公司同时开发同一种新产品,经测算,对于函数f(x),g(x)以及任意的x≥0,当甲公司投入x万元做宣传时,若乙公司投入的宣传费小于f(x)万元,则乙公司对这一新产品的开发有失败的风险,否则没有失败的风险;当乙公司投入x万元做宣传时,若甲公司投入的宣传费小于g(x)万元,则甲公司这一新产品的开发有失败的风险,否则没有失败的风险.
(1)试解释f(0)=10,g(0)=20的实际意义;
(2)设f(x)= x+10,g(x)=
+20,甲、乙两公司为了避免恶性竞争,经过协商,同意在双方均无失败风险的情况下尽可能少地投入宣传费用,问甲、乙两公司各应投入多少宣传费?
(1)求的最小正周期和单调增区间;
(2)当时,函数
的最大值与最小值的和
,求
已知函数,当
时,
取到极大值2。
(1)用关于a的代数式分别表示b和c;
(2)当时,求
的极小值
(3)求的取值范围。
如图,四棱锥G—ABCD中,ABCD是正方形,且边长为2a,面ABCD⊥面ABG,AG=BG。
(1)画出四棱锥G—ABCD的三视图;
![]() |
(2)在四棱锥G—ABCD中,过点B作平面
AGC的垂线,若垂足H在CG上,
求证:面AGD⊥面BGC
(3)在(2)的条件下,求三棱锥D—ACG的体积
及其外接球的表面积。
18
我市高三年级一模考试后,市教研室为了解情况,随机抽取200名考生的英语成绩统计如下表:
英语成绩 |
75~90 |
90~105 |
105~120 |
120~135 |
135~150 |
考生人数 |
20 |
30 |
80 |
40 |
30 |
(1)列出频率分布表
(2)画出频率分布直方图及折线图
(3)估计高三年级英语成绩在120分以上的概率
17
设
是由正数组成的数列,其前n项和为
,且满足关系:
(1)求数列
的通项公式;
(2)求