游客
题文

已知{an}是各项都为正数的等比数列,数列{bn}满足bn=[lga1+lga2+lga3+…+lg(kan)],问是否存在正数k,使得{bn}成等差数列?若存在,求出k的值;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较易
知识点: 等比数列
登录免费查看答案和解析
相关试题

观察下列三角形数表
1 -----------第一行
2 2 -----------第二行
3 4 3 -----------第三行
4 7 7 4 -----------第四行
5 11 14 11 5
…… …  …
…… … ……
假设第行的第二个数为
(Ⅰ)依次写出第六行的所有个数字;
(Ⅱ)归纳出的关系式并求出的通项公式;
(Ⅲ)设求证:

如图,在组合体中,是一个长方体,是一个四棱锥.,点
(Ⅰ)证明:
(Ⅱ)若,当为何值时,

已知函数f(x)= +lnx的图像在点P(m,f(m))处的切线方程为y="x" ,

(1)求证:当恒成立;
(2)试讨论关于的方程:根的个数.

已知数列{a}中,a=2,前n项和为S,且S=.
(1)证明数列{an+1-an}是等差数列,并求出数列{an}的通项公式
(2)设bn=,数列{bn}的前n项和为Tn,求使不等式Tn>
对一切n∈N*都成立的最大正整数k的值

如图,是等边三角形,是等腰直角三角形,

(Ⅰ)求的值;
(Ⅱ)求

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号