游客
题文

已知函数y=f(x)对任意x,y∈R均有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)="-" .
(1)判断并证明f(x)在R上的单调性;
(2)求f(x)在[-3,3]上的最值.

科目 数学   题型 解答题   难度 较易
知识点: 函数的基本性质
登录免费查看答案和解析
相关试题

已知函数
(1)判断函数的奇偶性,并说明理由。
(2)若,求使成立的集合。

已知函数
(1)若在[-3,2]上具有单调性,求实数的取值范围。
(2)若有最小值为-12,求实数的值;

求值:
(1)
(2)

已知定义在上的函数,如果满足:对任意,存在常数,使得成立,则称上的有界函数,其中称为函数的上界.
下面我们来考虑两个函数:.
(Ⅰ)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;
(Ⅱ)若,函数上的上界是,求的取值范围;
(Ⅲ)若函数上是以为上界的有界函数, 求实数的取值范围.

为实数,函数.
(Ⅰ)若,求的取值范围;
(Ⅱ)求函数的最小值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号