某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储备金数目a1,a2,…是一个公差为d的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为r(r>0),那么,在第n年末,第一年所交纳的储备金就变为a1(1+r)n-1,第二年所交纳的储备金就变为a2(1+r)n-2,…….以Tn表示到第n年末所累计的储备金总额.
(1)写出Tn与Tn-1(n≥2)的递推关系式;
(2)求证:Tn=An+Bn,其中{An}是一个等比数列,{Bn}是一个等差数列.
(本小题满分12分)
某高校在2013年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示,同时规定成绩在85分以上(含85分)的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格.
(1)求出第4组的频率;
(2)如果用分层抽样的方法从“优秀”和“良好” 的学生中选出5人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?
(本小题满分14分)
已知函数是奇函数.
(1)求实数的值;
(2)判断函数在
上的单调性,并给出证明;
(3)当时,函数
的值域是
,求实数
与
的值。
(本小题满分14分)
已知是定义在R上的奇函数,且
,求:
(1)的解析式。
(2)已知,求函数
在区间
上的最小值。
(本小题满分14分)
我市有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.
(1)设在甲家租一张球台开展活动小时的收费为
元
,在乙家租一张球台开展活动
小时的收费为
元
,试求
和
。
(2)问:小张选择哪家比较合算?说明理由。
(本小题满分14分)
如图,四棱锥中,
是
的中点,
,
,且
,
,又
面
.
(1) 证明:;
(2) 证明:面
;
(3) 求四棱锥的体积