设数列{an}的前n项和Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1.
(1)求数列{an}和{bn}的通项公式;
(2)设cn=,求数列{cn}的前n项和Tn.
(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.
要测定古物的年代,常用碳的放射性同位素的衰减来测定:在动植物的体内都含有微量的
,动植物死亡后,停止了新陈代谢,
不再产生,且原有的
含量的衰变经过5570年(
的半衰期),它的残余量只有原始量的一半.若
的原始含量为
,则经过
年后的残余量
与
之间满足
.
(1) 求实数的值;
(2) 测得湖南长沙马王堆汉墓女尸中的残余量约占原始含量的76.7%,试推算马王堆古墓的年代(精确到100年).
(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.
(理科)已知四棱锥的底面
是直角梯形,
,
,
侧面为正三角形,
,
.如图4所示.
(1) 证明:平面
;
(2) 求四棱锥的体积
.
.已知椭圆C1的方程为,双曲线C2的左
、右焦点分别为C1的
左、右顶点,而C2的左、右顶点分别是C1的左、右焦点。
(Ⅰ)求双曲线C2的方程;
(Ⅱ)若直线与椭圆C1及双曲线C2都恒有两个不同的交点,且l与C2的两个交点A和B满足
(其中O为原点),求k的取值范围。
. 设函数是定义在
上的增函数,若不等式
对于任意
恒成立,求实数
的取值范围。
已知:双曲线的左、右两个焦点分别为
、
,动点
满足
。
()求:动点
的轨迹
的方程;
()若
、
分别为(1)中曲线
的左、右焦点,
是曲线
上的一个动点,
求:的最大值和最小值。