假设某市2008年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,
(1)该市历年所建中低价房的累计面积(以2008年为累计的第一年)将首次不少于4 750万平方米?
(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?(参考数据:1.084≈1.36,1.085≈1.47,
1.086≈1.59)
已知曲线的极坐标方程是
,直线
的参数方程是
(
为参数).
(I)将曲线的极坐标方程转化为直角坐标方程;
(Ⅱ)设直线与
轴的交点是
为曲线
上一动点,求
的最大值.
曲线在二阶矩阵
的作用下变换为曲线
,
(I)求实数的值;
(II)求的逆矩阵
.
已知函数.
(I)若在
处取得极值,
①求、
的值;②存在
,使得不等式
成立,求
的最小值;
(II)当时,若
在
上是单调函数,求
的取值范围.(参考数据
)
如图,为半圆,
为半圆直径,
为半圆圆心,且
,
为线段
的中点,已知
,曲线
过
点,动点
在曲线
上运动且保持
的值不变.
(I)建立适当的平面直角坐标系,求曲线的方程;
(II)过点的直线
与曲线
交于
两点,与
所在直线交于
点,
,
证明:
为定值.
如图,是圆
的直径,点
在圆
上,
,
交
于点
,
平面
,
,
.
(1)证明:;
(2)求平面与平面
所成的锐二面角的余弦值.