如图,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,SD=2a.
(1)求证:平面SAB⊥平面SAD;
(2)设SB的中点为M,当为何值时,能使DM⊥MC?请给出证明.
某险种的基本保费为 (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:
上年度出险次数 |
0 |
1 |
2 |
3 |
4 |
5 |
保费 |
0.85a |
a |
1.25a |
1.5a |
1.75a |
2a |
设该险种一续保人一年内出险次数与相应概率如下:
一年内出险次数 |
0 |
1 |
2 |
3 |
4 |
5 |
概率 |
0.30 |
0.15 |
0.20 |
0.20 |
0.10 |
0. 05 |
(1)求一续保人本年度的保费高于基本保费的概率;
(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;
(3)求续保人本年度的平均保费与基本保费的比值.
为等差数列 的前n项和,且 记 ,其中 表示不超过x的最大整数,如 .
(1)求 ;
(2)求数列 的前1 000项和.
设函数 ,其中 。
(1)求 的单调区间;
(2)若 存在极点 , 且 ,其中 , 求证: ;
(3)设 ,函数 ,求证: 在区间 上的最大值不小于 .
设椭圆 的右焦点为F,右顶点为A,已知 ,其中O为原点,e为椭圆的离心率.
(1)求椭圆的方程;
(2)设过点A的直线l与椭圆交于B(B不在 轴上),垂直于l的直线与l交于点M,与y轴交于点H,若 ,且 ,求直线 的斜率.
已知 是各项均为整数得等差数列,公差为d,对任意的 , 是 和 得等比中项。
(1)设 , ,求证:数列 是等差数列;
(2)设 , , ,求证: