△ABC是正三角形,线段EA和DC都垂直于平面ABC.设EA=AB=2a,DC=a,且F为BE的中点,如图.
(1)求证:DF∥平面ABC;
(2)求证:AF⊥BD;
(3)求平面BDF与平面ABC所成二面角的大小.
如图,在平面直角坐标系中,已知椭圆
:
的离心率
,左顶点为
,过点
作斜率为
的直线
交椭圆
于点
,交
轴于点
.
(1)求椭圆的方程;
(2)已知为
的中点,是否存在定点
,对于任意的
都有
,若存在,求出点
的坐标;若不存在说明理由;
(3)若过点作直线
的平行线交椭圆
于点
,求
的最小值.
已知各项均为正数的数列的首项
,
是数列
的前n项和,且满足:
.
(1)若,
,
成等比数列,求实数
的值;
(2)若,求
.
如图,是南北方向的一条公路,
是北偏东
方向的一条公路,某风景区的一段边界为曲线
.为方便游客光,拟过曲线
上的某点分别修建与公路
,
垂直的两条道路
,且
的造价分别为
万元/百米,
万元/百米,建立如图所示的直角坐标系
,则曲线符合函数
模型,设
,修建两条道路
的总造价为
万元,题中所涉及的长度单位均为百米.
(1)求解析式;
(2)当为多少时,总造价
最低?并求出最低造价.
如图,在四棱锥中,已知底面
为矩形,
平面
,点
为棱
的中点,求证:
(1)平面
;
(2)平面平面
.
在锐角三角形中,角
的对边为
,已知
,
,
(1)求;
(2)若,求
.