如图,是南北方向的一条公路,
是北偏东
方向的一条公路,某风景区的一段边界为曲线
.为方便游客光,拟过曲线
上的某点分别修建与公路
,
垂直的两条道路
,且
的造价分别为
万元/百米,
万元/百米,建立如图所示的直角坐标系
,则曲线符合函数
模型,设
,修建两条道路
的总造价为
万元,题中所涉及的长度单位均为百米.
(1)求解析式;
(2)当为多少时,总造价
最低?并求出最低造价.
(本题共10分)
已知函数,当
时,有极大值
。
(Ⅰ)求的值;
(Ⅱ)求函数的极小值。
(本题共10分)
已知函数。
(Ⅰ)若曲线在
处的切线与直线
垂直,求
的值;
(Ⅱ)若函数在区间(
,
)内是增函数,求
的取值范围。
已知函数f(x)=1 .
(1)试讨论函数f(x)的单调性;
(2)若 ,且f(x)在区间[1,3]上的最大值为M(a) ,最小值为N(a),
令g(a)= M(a)-N(a),求 g(a)的表达式,试求g(a)的最小值.
已知函数f(x)=.
(1) 判断f(x)的单调性,并证明你的结论;
(2)求f(x)的值域.
已知p: x-4ax+3a
< 0, q:
,且q是p的充分条件,
求实数a的取值范围.