为防止某突发事件,有甲、乙、丙、丁四种相互独立的预防措施可供采用,单独采用甲、乙、丙、丁预防措施后突发事件不发生的概率(记为)和所需费如下表:
预防措施 |
甲 |
乙 |
丙 |
丁 |
![]() |
0.9 |
0.8 |
0.7 |
0.6 |
费用(万元) |
90 |
60 |
30 |
10 |
预防方案可单独采用一种预防措施或联合采用几种预防措施.在总费不超过120万元的前提下,请确定一个预防方案,使得此突发事件不发生的概率最大.
(本小题满分10分)设不等式的解集为集合
,关于
的不等式
的解集为集合
.
(1)若,求实数
的取值范围;
(2)若∩
,求实数
的取值范围.
定义在上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的上界.已知函数
,
(1)当时,求函数
在
上的值域,并判断函数
在
上是否为有界函数,请说明理由;
(2)若函数在
上是以4为上界的有界函数,求实数
的取值范围.
已知向量,
,函数
(1)求的单调递增区间;
(2)若不等式都成立,求实数m的最大值.
已知点,
,点
在单位圆上.
(1)若(
为坐标原点),求
与
的夹角;
(2)若,求点
的坐标.
设全集为R,集合,
.
(1)求;
(2)已知,若
,求实数
的取值范围.