若函数存在单调递减区间,求实数a的取值范围.
(理科)已知椭圆经过点
,离心率为
.(Ⅰ)求椭圆
的方程;
(Ⅱ)直线与椭圆
交于
两点,点
是椭圆
的右顶点.直线
与直线
分别与
轴交于点
,试问以线段
为直径的圆是否过
轴上的定点?若是,求出定点坐标;若不是,说明理由.
(文科)已知椭圆的右焦点为
,短轴的端点分别为
,且
.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点且斜率为
的直线
交椭圆于
两点,弦
的垂直平分线与
轴相交于点
.设弦
的中点为
,试求
的取值范围.
(理科)已知双曲线的离心率为
,右准线方程为
(Ⅰ)求双曲线的方程;
(Ⅱ)设直线是圆
上动点
处的切线,
与双曲线
交于不同的两点
,证明
的大小为定值.
(文科)已知椭圆(
)的四个顶点恰好是一边长为
,一内角为
的菱形的四个顶点.
(1)求椭圆的方程;
(2)直线与椭圆
交于
,
两点,且线段
的垂直平分线经过点
,求
(
为原点)面积的最大值.
(理科)已知椭圆的离心率
,连接椭圆的四个顶点得到的菱形的面积为4。
(1)求椭圆的方程;
(2)设直线与椭圆相交于不同的两点
,已知点
的坐标为(
),点
在线段
的垂直平分线上,且
,求
的值