已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点.
(1)当l经过圆心C时,求直线l的方程;
(2)当弦AB被点P平分时,写出直线l的方程;
(3)当直线l的倾斜角为45º时,求弦AB的长.
在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;
若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3
次,设分别表示甲,乙,丙3个盒中的球数.
(1)求依次成公差大于0的等差数列的概率;
(2)记,求随机变量
的概率分布列和数学期望.
在中,
为
边上的点
,且
.
(1)求;
(2)若,求
.
已知函数
(1)当时,求
的极小值;
(2)若直线对任意的
都不是曲线
的切线,求
的取值范围;
(3)设,求
的最大值
的解析式.
已知,
,
.
(1)若,
,求
的外接圆的方程;
(2)若以线段为直径的圆
过点
(异于点
),直线
交直线
于点
,线段
的中点为
,试判断直线
与圆
的位置关系,并证明你的结论.
数列的前
项和为
,数列
是首项为
,公差不为零的等差数列,且
成等比数列.
(1)求的值;
(2)求数列与
的通项公式;
(3)求证: