已知关于x的一元二次函数
(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为和
,
求函数在区间[
上是增函数的概率;
(2)设点(,
)是区域
内的随机点,求函数
上是增函数的概率.
在直三棱柱ABC-A1B1C1中,已知AB=5,AC=4,BC=3,AA1=4,点D在棱AB上.
(1)求证:AC⊥B1C;
(2)若D是AB中点,求证:AC1∥平面B1CD.
已知数列的前n项和为
,
(1)证明:数列是等差数列,并求
;
(2)设,求证:
已知函数.
(1)求函数的最大值,并写出
取最大值时
的取值集合;
(2)已知中,角
的对边分别为
若
求实数
的最小值.
A.(坐标系与参数方程)已知直线的参数方程为(为参数),圆
的参数方程为
(
为参数),则圆心
到直线的距离为_________.
B.(几何证明选讲)如右图,直线与圆
相切于点
,割线
经过圆心
,弦
⊥
于点
,
,
,则
_________.
C.(不等式选讲)若存在实数使
成立,则实数
的取值范围是_________.