设虚数z1,z2,满足.
(1)若z1,z2又是一个实系数一元二次方程的两根,求z1, z2。
(2)若z1=1+mi(i为虚数单位,m∈R), ,复数w=z2+3,求|w|的取值范围。
如图,四棱柱的底面
是平行四边形,且
,
,
,
为
的中点,
平面
.
(Ⅰ)证明:平面平面
;
(Ⅱ)若,试求异面直线
与
所成角的余弦值;
(Ⅲ)在(Ⅱ)的条件下,试求二面角的余弦值.
在某校教师趣味投篮比赛中,比赛规则是:每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖.已知教师甲投进每个球的概率都是.
(Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望;
(Ⅱ)求教师甲在一场比赛中获奖的概率.
已知函数,
.求:
(I)求函数的最小正周期和单调递增区间;
(II)求函数在区间
上的值域.
已知,
(Ⅰ)当时,求曲线
在点
处的切线方程;
(Ⅱ)若在
处有极值,求
的单调递增区间;
(Ⅲ)是否存在实数,使
在区间
的最小值是3,若存在,求出
的值;若不存在,说明理由.
在中,角
所对的边分别为
,且
,
(1)求,
的值;
(2)若,求
的值.