已知直线m经过点P(-3,),被圆O:x2+y2=25所截得的弦长为8,
(1)求此弦所在的直线方程;
(2)求过点P的最短弦和最长弦所在直线的方程.
为了倡导健康、低碳、绿色的生活理念,某市建立了公共自行车服务系统鼓励市民租用公共自行车出行公共自行车按每车每次的租用时间进行收费,具体收费标准如下:
①租用时间不超过1小时,免费;
②租用时间为1小时以上且不超过2小时,收费1元;
③租用时间为2小时以上且不超过3小时,收费2元;
④租用时间超过3小时的时段,按每小时2元收费(不足1小时的部分按1小时计算)已知甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过1小时的概率分别是0.4和0.5 ,租用时间为1小时以上且不超过2小时的概率分别是0.5和0.3.
(1)求甲、乙两人所付租车费相同的概率;
(2)设甲、乙两人所付租车费之和为随机变量,求
的分布列和数学期望E
如图, 已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.
(1)求证:AG平面BDE;
(2)求:二面角GDE
B的余弦值.
已知函数(
)的最小正周期为
.
(1)求函数的单调增区间;
(2)将函数的图象向左平移
个单位,再向上平移1个单位,得到函数
的图象;若
在
上至少含有10个零点,求b的最小值.
已知函数,其中m,a均为实数.
(1)求的极值;
(2)设,若对任意的
,
恒成立,求
的最小值;
(3)设,若对任意给定的
,在区间
上总存在
,使得
成立,求
的取值范围.
设各项均为正数的数列的前n项和为Sn,已知
,且
对一切
都成立.
(1)若λ = 1,求数列的通项公式;
(2)求λ的值,使数列是等差数列.