已知函数(
)的最小正周期为
.
(1)求函数的单调增区间;
(2)将函数的图象向左平移
个单位,再向上平移1个单位,得到函数
的图象;若
在
上至少含有10个零点,求b的最小值.
(本小题满分12分)
已知中心在原点,焦点在轴上的椭圆C的离心率为
,且经过点
,过点P(2,1)的直线
与椭圆C相交于不同的两点A、B.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存直线,满足
?
若存在,求出直线
的方程;若不存在,请说明理由.
(本小题满分12分)
设函数
.
(Ⅰ)求的最小值
;
(Ⅱ)若对
恒成立,求实数
的取值范围.
(本小题满分12分)已知椭圆短轴
的一个端点
,离心率
.过
作直线
与椭圆交于另一点
,与
轴交于点
(
不同于原点
),点
关于
轴的对称点为
,直线
交
轴于点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)求 的值.
本小题满分12分)已知函数f(x)=ax3+mx2-m2x+1(m<0)在点x=-m处取得极值.
(Ⅰ)求a的值;
(Ⅱ)求函数f(x)的单调区间.
本小题满分10分)求圆心在上,与
轴相切,且被直线
截得弦长为
的圆的方程
.