如图所示,等腰△ABC的底边AB=6,高CD=3,点E是线段BD上异于点B、D的动点.点F在BC边上,且EF⊥AB.现沿EF将△BEF折起到△PEF的位置,使PE⊥AE.记
,用
表示四棱锥P-ACFE的体积.
(Ⅰ)求 的表达式;
(Ⅱ)当x为何值时,取得最大值?
(Ⅲ)当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值
已知动点与定点
的距离和它到直线
的距离之比是常数
,记
的轨迹为曲线
.
(I)求曲线的方程;
(II)设直线与曲线
交于
两点,点
关于
轴的对称点为
,试问:当
变化时,直线
与
轴是否交于一个定点?若是,请写出定点的坐标,并证明你的结论;若不是,请说明理由.
如图,在直三棱柱(即侧棱与底面垂直的三棱柱)中,
(I)若为
的中点,求证:平面
平面
;
(II)若为线段
上一点,且二面角
的大小为
,试确定
的位置.
某中学举行了一次“环保知识竞赛”,全校学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:
频率分布表
组别 |
分组 |
频数 |
频率 |
第1组 |
[50,60) |
8 |
0.16 |
第2组 |
[60,70) |
a |
▓ |
第3组 |
[70,80) |
20 |
0.40 |
第4组 |
[80,90) |
▓ |
0.08 |
第5组 |
[90,100] |
2 |
b |
合计 |
▓ |
▓ |
频率分布直方图
、
(Ⅰ)写出的值;
(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动,设表示所抽取的2名同学中来自第5组的人数,求
的分布列及其数学期望.
设数列满足:
点
均在直线
上.
(I)证明数列为等比数列,并求出数列
的通项公式;
(II)若,求数列
的前
项和
.
已知函数在
处取得极值,且
恰好是
的一个零点.
(Ⅰ)求实数的值,并写出函数
的单调区间;
(Ⅱ)设、
分别是曲线
在点
和
(其中
)处的切线,且
.
①若与
的倾斜角互补,求
与
的值;
②若(其中
是自然对数的底数),求
的取值范围.