为了倡导健康、低碳、绿色的生活理念,某市建立了公共自行车服务系统鼓励市民租用公共自行车出行公共自行车按每车每次的租用时间进行收费,具体收费标准如下:
①租用时间不超过1小时,免费;
②租用时间为1小时以上且不超过2小时,收费1元;
③租用时间为2小时以上且不超过3小时,收费2元;
④租用时间超过3小时的时段,按每小时2元收费(不足1小时的部分按1小时计算)已知甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过1小时的概率分别是0.4和0.5 ,租用时间为1小时以上且不超过2小时的概率分别是0.5和0.3.
(1)求甲、乙两人所付租车费相同的概率;
(2)设甲、乙两人所付租车费之和为随机变量,求
的分布列和数学期望E
某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组[13,14),第二组[14,15),…,第五组[17,18],下图是按上述分组方法得到的频率分布直方图.
(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(2)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于l的概率.
已知等比数列{an}满足:a1=2,a2•a4=a6.
(1)求数列{an}的通项公式;
(2)记数列bn=,求该数列{bn}的前n项和Sn.
设项数均为(
)的数列
、
、
前
项的和分别为
、
、
.已知
,且集合
=
.
(1)已知,求数列
的通项公式;
(2)若,求
和
的值,并写出两对符合题意的数列
、
;
(3)对于固定的,求证:符合条件的数列对(
,
)有偶数对.
已知实数,函数
.
(1)当时,求
的最小值;
(2)当时,判断
的单调性,并说明理由;
(3)求实数的范围,使得对于区间
上的任意三个实数
,都存在以
为边长的三角形.
噪声污染已经成为影响人们身体健康和生活质量的严重问题.实践证明, 声音强度(分贝)由公式
(
为非零常数)给出,其中
为声音能量.
(1)当声音强度满足
时,求对应的声音能量
满足的等量关系式;
(2)当人们低声说话,声音能量为时,声音强度为30分贝;当人们正常说话,声音能量为
时,声音强度为40分贝.当声音能量大于60分贝时属于噪音,一般人在100分贝~120分贝的空间内,一分钟就会暂时性失聪.问声音能量在什么范围时,人会暂时性失聪.