在空间直角坐标系中,已知A(3,0,1)和B(1,0,-3),试问
(1)在y轴上是否存在点M,满足?
(2)在y轴上是否存在点M,使△MAB为等边三角形?若存在,试求出点M坐标.
如图所示,已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切,过点B(-2,0)的动直线l与圆A相交于M,N两点,Q是MN的中点,直线l与l1相交于点P.
(1)求圆A的方程;
(2)当=2
时,求直线l的方程;
(3)·
是否为定值?如果是,求出其定值;如果不是,请说明理由.
在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.
(1)求证:平面EFG∥平面PMA;
(2)求证:平面EFG⊥平面PDC;
(3)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.
有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次.根据年龄将大众评委分为五组,各组的人数如下:
组别 |
A |
B |
C |
D |
E |
人数 |
50 |
100 |
150 |
150 |
50 |
(1)为了调查评委对7位歌手的支持情况,现用分层抽样方法从各组中抽取若干评委,其中从B组抽取了6人,请将其余各组抽取的人数填入下表.
组别 |
A |
B |
C |
D |
E |
人数 |
50 |
100 |
150 |
150 |
50 |
抽取人数 |
6 |
(2)在(1)中,若A,B两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.
设数列{an}的前n项和为Sn.已知a1=1,Sn+1=4an+2.
(1)设bn=an+1-2an,证明数列{bn}是等比数列;
(2)求数列{an}的通项公式.
已知,其中0<ω<2.函数
,其图象的一条对称轴为x=
.
(1)求函数f(x)的表达式及单调递增区间;
(2)在△ABC中,a,b,c分别为角A,B,C的对边,S为其面积,若,b=1,S△ABC=
,求a的值.