增城市数、理、化竞赛时,高一某班有24名学生参加数学竞赛,28名学生参加物理竞赛,19名学生参加化学竞赛,其中参加数、理、化三科竞赛的有7名,只参加数、物两科的有5名,只参加物、化两科的有3名,只参加数、化两科的有4名。若该班学生共有48名,问没有参加任何一科竞赛的学生有多少名?
已知定义在上的奇函数
在
处取得极值.
(Ⅰ)求函数的解析式;
(Ⅱ)试证:对于区间上任意两个自变量的值
,都有
成立;
(Ⅲ)若过点可作曲线
的三条切线,试求点P对应平面区域的面积.
设,函数
.
(Ⅰ)若,求曲线
在点
处的切线方程;
(Ⅱ)求函数在
上的最小值.
已知函数.
(I)若函数在点
处的切线斜率为4,求实数
的值;
(II)若函数在区间
上存在零点,求实数
的取值范围
若关于的实系数方程
有两个根,一个根在区间
内,另一根在区间
内,记点
对应的区域为
.
(1)设,求
的取值范围;
(2)过点的一束光线,射到
轴被反射后经过区域
,求反射光线所在直线
经过区域
内的整点(即横纵坐标为整数的点)时直线
的方程.