游客
题文

椭圆C的中心为坐标原点O,焦点在y轴上,离心率e = ,椭圆上的点到焦点的最短距离为1-e, 直线l与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且
(1)求椭圆方程;
(2)若,求m的取值范围.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的方程为,直线方程为(t为参数),直线与C的公共点为T.
(1)求点T的极坐标;
(2)过点T作直线被曲线C截得的线段长为2,求直线的极坐标方程.

设命题:实数满足,其中;命题:实数满足的必要不充分条件,求实数的取值范围.

已知圆心为的圆经过点.
(1)求圆的标准方程;
(2)若直线过点且被圆截得的线段长为,求直线的方程;
(3)是否存在斜率是1的直线,使得以被圆所截得的弦EF为直径的圆经过
原点?若存在,试求出直线的方程;若不存在,请说明理由.

如图,在四棱锥中,⊥底面,底面
为正方形,分别是的 中点.
(1)求证:平面
(2)求证:
(3)若是线段上一动点,试确定点位置,
使平面,并证明你的结论.

在△ABC中,已知c=,b=1,B=30°.(1)求角A; (2)求△ABC的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号