如图所示,已知四棱锥中,底面
为正方形,侧面
为正三角形,且平面
底面
,
为
中点,求证:
(1)平面
; (2)平面
平面
.
![]() |
有一种密英文的明文(真实文)按字母分解,其中英文的a,b,c,…,z的26个字母(不分大小写),依次对应1,2,3,…,26这26个自然数,见如下表格:
a |
b |
c |
d |
e |
f |
g |
h |
i |
j |
k |
l |
m |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
n |
o |
p |
q |
r |
s |
t |
u |
v |
w |
x |
y |
z |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
给出如下变换公式:(x∈N,1≤x≤26,x不能被2整除)
+13(x∈N,1≤x≤26,x能被2整除)
将明文转换成密文,如8→+13=17,即h变成q;如5→
=3,即e变成c.
①按上述规定,将明文good译成的密文是什么?
②按上述规定,若将某明文译成的密文是shxc,那么原来的明文是什么?
已知函数f(x)=x3 +x(x∈R).
(1)指出f(x)的奇偶性及单调性,并说明理由;
(2)若a、b、c∈R,且a+b>0,b+c>0,c+a>0,试判断f(a)+f(b)+f(c)的符号.
设命题p:“函数f(x)=ax+1在(-1,1)上存在一个零点”,命题q:“函数f(x)=x2-2ax在(1,+∞)上单调递增”.若“p∨q”为真,“p∧q”为假,求实数a的取值范围.
已知函数, 若
2)=1,求
(1) 实数的值;
(2)函数的值;
(3)不等式的解集.
.(本小题10分)
在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值(元)的概率分布列和期望
.