如图,梯形的顶点
与顶点
分别在平面
的两侧,且梯形的两边
与
分别与
交于
两点;梯形的另两条边
的延长线分别与
交于
两点,求证:
四点共线.
(本小题满分12分)
设函数.
(Ⅰ)请在下列直角坐标系中画出函数的图象;
(Ⅱ)根据(Ⅰ)的图象,试分别写出关于的方程
有2,3,4个实数解时,相应的实数
的取值范围;
(Ⅲ)记函数的定义域为
,若存在
,使
成立,则称点
为函数
图象上的不动点.试问,函数
图象上是否存在不动点,若存在,求出不动点的坐标,若不存在,请说明理由.
(本小题满分12分)某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(Ⅰ) 当每辆车的月租金定为3600元时,能租出多少辆车?
(Ⅱ)设每辆车的月租金为元(
),则能租出多少辆车?当
为何值时,租赁公司的月收益
最大?最大月收益是多少?
(本小题满分12分)
对于函数:
(Ⅰ) 是否存在实数使函数
为奇函数?
(Ⅱ) 探究函数的单调性(不用证明),并求出函数
的值域.
((本小题满分12分)
设集合,
,
.
求(Ⅰ); (Ⅱ)
; (Ⅲ)
本小题满分12分)
(Ⅰ) 已知,化简
;
(Ⅱ) 已知,
,试用
表示
.