求斜率为且与两坐标轴围成三角形的周长是12的直线
的方程.
某校有一贫困学生因病需手术治疗,但现在还差手术费万元,团委计划在全校开展爱心募捐活动,为了增加活动的趣味性吸引更多学生参与,特举办“摇奖100%中奖”活动.凡捐款10元者,享受一次摇奖机会,如图是摇奖机的结构示意图,摇奖机的旋转盘是均匀的,扇形区域
所对应的圆心角的比值分别为1:2:3:4:5.相应区域分别设立一、二、三、四、五等奖,奖品分别为价值分别为5元、4元、3元、2元、1元的学习用品.摇奖时,转动圆盘片刻,待停止后,固定指针指向哪个区域(边线忽略不计)即可获得相应价值的学习用品(如图指针指向区域
,可获得价值3元的学习用品).
(Ⅰ)预计全校捐款10元者将会达到1500人次,那么除去购买学习用品的款项后,剩余款项是否能帮助该生完成手术治疗?
(II)如果学生甲捐款20元,获得了两次摇奖机会,求他获得价值6元的学习用品的概率.
用平行于棱锥底面的平面去截棱锥,则截面与底面之间的部分叫棱台.如图,在四棱台中,下底
是边长为
的正方形,上底
是边长为1的正方形,侧棱
⊥平面
,
.
(Ⅰ)求证:平面
;
(II)求平面与平面
夹角的余弦值.
已知中,角
、
、
的对边分别为
、
、
,角
不是最大角,
,外接圆的圆心为
,半径为
.
(Ⅰ)求的值;
(Ⅱ)若,求
的周长
已知数列满足
,
,等比数列
的首项为2,公比为
.
(Ⅰ)若,问
等于数列
中的第几项?
(Ⅱ)数列和
的前
项和分别记为
和
,
的最大值为
,当
时,试比较
与
的大小
对于数列,定义“
变换”:
将数列
变换成数列
,其中
,且
.这种“
变换”记作
.继续对数列
进行“
变换”,得到数列
,依此类推,当得到的数列各项均为
时变换结束.
(Ⅰ)试问经过不断的“
变换”能否结束?若能,请依次写出经过“
变换”得到的各数列;若不能,说明理由;
(Ⅱ)设,
.若
,且
的各项之和为
.
(ⅰ)求,
;
(ⅱ)若数列再经过
次“
变换”得到的数列各项之和最小,求
的最小值,并说明理由.