抛物线M:的准线过椭圆N:
的左焦点,以坐标原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的部分以及y轴的正半轴相交于点A与点B,直线AB与x轴相交于点C.
(1)求抛物线M的方程.
(2)设点A的横坐标为x1,点C的横坐标为x2,曲线M上点D的横坐标为x1+2,求直线CD的斜率.
已知在四棱锥中,底面
是矩形,且
,
,
平面
,
、
分别是线段
、
的中点.
(1)证明:
(2)若与平面
所成的角为
,求二面角
的余弦值
已知函数,
,直线
与曲线
切于点
且与曲线
切于点
.
(1)求a,b的值和直线的方程;
(2)证明:.
,证明:
.
在极坐标系中,已知直线l的极坐标方程为,圆C的圆心是
,半径为
。
(Ⅰ)求圆C的极坐标方程;
(Ⅱ)求直线l被圆C所截得的弦长