已知函数,斜率为
的直线与
相切于
点.
(Ⅰ)求的单调区间;
(Ⅱ)当实数时,讨论
的极值点。
(Ⅲ)证明:.
如图,是边长为3的正方形,
,
,
与平面
所成的角为
.
(1)求二面角的的余弦值;
(2)设点是线段
上一动点,试确定
的位置,使得
,并证明你的结论.
如图,四边形为矩形,
平面
,
为
上的点,且
平面
.
(1)求三棱锥的体积;
(2)设在线段
上,且满足
,试在线段
上确定一点
,使得
平面
.
如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=.
(1)证明:平面A1BD∥平面CD1B1;
(2)求三棱柱ABD-A1B1D1的体积.
如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).
(1)按照画三视图的要求画出该多面体的俯视图;
(2)在所给直观图中连接BC′,求证:BC′∥面EFG.
如图,△中,
,
,
,在三角形内挖去一个半圆(圆心
在边
上,半圆与
、
分别相切于点
、
,与
交于点
),将△
绕直线
旋转一周得到一个旋转体。
(1)求该几何体中间一个空心球的表面积的大小;
(2)求图中阴影部分绕直线旋转一周所得旋转体的体积.