已知直线,圆
,椭圆
的离心率
,直线
被圆
截得的弦长与椭圆的短轴长相等.
求椭圆
的方程;
已知动直线
(斜率存在)与椭圆
交于
两个不同点,且△
的面积为
,若
为线段
的中点,问:在
轴上是否存在两个定点
使得直线
与
的斜率之积为定值?若存在,求出
的坐标,若不存在,说明理由.
已知中心在原点,焦点在轴上的椭圆
的离心率为
,且经过点
,过点
的直线
与椭圆
相交于不同的两点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在直线,满足
?若存在,求出直线
的方程;若不存在,请说明理由.
某商店投入38万元经销某种纪念品,经销期60天,为了获得更多的利润,商店将每天获得的利润投入到次日的经营中,市场调研表明,该商店在经销这一产品期间第天的利润
(单位:万元,
),记第
天的利润率
,例如
(Ⅰ)求的值;
(Ⅱ)求第天的利润率
;
(Ⅲ)该商店在经销此纪品期间,哪一天的利润率最大?并求该天的利润率。
如图,在四棱锥P—ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠ABC=∠BAD=90°,AD>BC,E,F分别为棱AB,PC的中点.
(I)求证:PE⊥BC;
|
(II)求证:EF//平面PAD.
某中学举办安全法规知识竞赛,从参赛的高一、高二学生中各抽出人的成绩作为样本.对高一年级的
名学生的成绩进行统计,并按
分组,得到成绩分布的频率分布直方图(如图).
(Ⅰ)若规定60分以上(包括60分)为合格,计算高一年级这次知识竞赛的合格率;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此,估计高一年级这次知识竞赛的学生的平均成绩;
(Ⅲ)若高二年级这次知识竞赛的合格率为60%,由以上统计数据填写下面列联表,并问是否有99%的把握认为“这次知识竞赛的成绩与年级有关系”。
高一 |
高二 |
合计 |
|
合格人数 |
|||
不合格人数 |
|||
合计 |
参考数据与公式:
由列联表中数据计算的公式
![]() |
0.10 |
0.05 |
0.010 |
![]() |
2.706 |
3.841 |
6.635 |
临界值表
(本小题满分12分)若函数的图象与直线
相切,相邻切点之间的距离为
.
(Ⅰ)求的值;
(Ⅱ)若点是
图象的对称中心,且
,求点
的坐标.