游客
题文

某中学举办安全法规知识竞赛,从参赛的高一、高二学生中各抽出人的成绩作为样本.对高一年级的名学生的成绩进行统计,并按分组,得到成绩分布的频率分布直方图(如图).

(Ⅰ)若规定60分以上(包括60分)为合格,计算高一年级这次知识竞赛的合格率;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此,估计高一年级这次知识竞赛的学生的平均成绩;
(Ⅲ)若高二年级这次知识竞赛的合格率为60%,由以上统计数据填写下面列联表,并问是否有99%的把握认为“这次知识竞赛的成绩与年级有关系”。

 
高一
高二
合计
合格人数
 
 
 
不合格人数
 
 
 
合计
 
 
 

参考数据与公式:
由列联表中数据计算的公式


0.10
0.05
0.010

2.706
3.841
6.635

临界值表

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,D为BC中点.

(Ⅰ) 求证:A1B//平面ADC1
(Ⅱ) 求证:C1A⊥B1C;
(Ⅲ) 求直线B1C1与平面A1B1C所成的角.

设函数
(Ⅰ)求的最大值,并写出使取最大值是的集合;
(Ⅱ)求的单调递增区间;
(Ⅲ)已知△ABC中,角A,B,C的对边分别为a,b,c.若,求a的最小值.

(本小题满分14分)
直线与椭圆交于两点,已知,若且椭圆的离心率,又椭圆经过点为坐标原点.
(1)求椭圆的方程;
(2)若直线过椭圆的焦点为半焦距),求直线的斜率的值;
(3)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

(本小题满分12分)
已知函数的一个极值点.
(1)求函数的单调区间;
(2)若当时,恒成立,求的取值范围.

如图,在梯形中,,四边形为矩形,平面平面.
(1)求证:平面
(2)点在线段上运动,设平面与平面所成二面角的平面角为,试求的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号