已知中心在原点,焦点在轴上的椭圆
的离心率为
,且经过点
,过点
的直线
与椭圆
相交于不同的两点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在直线,满足
?若存在,求出直线
的方程;若不存在,请说明理由.
如图,在三棱柱中,侧棱
底面
,
,
为
的中点,
.
(Ⅰ)求证://平面
;
(Ⅱ)设,求四棱锥
的体积.
设是公差大于零的等差数列,已知
,
.
(Ⅰ)求的通项公式;
(Ⅱ)设是以函数
的最小正周期为首项,以
为公比的等比数列,求数列
的前
项和
.
已知函数
(Ⅰ)时,求
在
处的切线方程;
(Ⅱ)若对任意的
恒成立,求实数
的取值范围;
(Ⅲ)当时,设函数
,若
,求证:
.
已知.
(Ⅰ)当时,判断
的奇偶性,并说明理由;
(Ⅱ)当时,若
,求
的值;
(Ⅲ)若,且对任何
不等式
恒成立,求实数
的取值范围.
已知直三棱柱的三视图如图所示,且
是
的中点.
(Ⅰ)求证:∥平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)试问线段上是否存在点
,使
与
成
角?若存在,确定
点位置,若不存在,说明理由.