求过直线l1:x-2y+3=0与直线l2:2x+3y-8=0的交点,且到点P(0,4)的距离为1的直线的方程.
已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,右焦点到直线x+y+1=0的距离为.
(1)求椭圆的方程;
(2)直线过点P(0,2)且与椭圆相交于A,B的点,当△AOB面积取得最大值时,求直线
的方程.
如图,正四棱柱中,底面边长为2,侧棱长为3,E为BC的中点,F、G分别为
、
上的点,且CF=2GD=2.求:
(1)到面EFG的距离;
(2)DA与面EFG所成的角的正弦值;
(3)在直线上是否存在点P,使得DP//面EFG?,若存在,找出点P的位置,若不存在,试说明理由。
已知函数,其图像在点
处的切线为
.
(1)求、直线
及两坐标轴围成的图形绕
轴旋转一周所得几何体的体积;
(2)求、直线
及
轴围成图形的面积.
已知函数.
(Ⅰ)当时,求
的极小值;
(Ⅱ)若直线对任意的
都不是曲线
的切线,求
的取值范围.
数列的前n项和为Sn ,且满足
。
(Ⅰ)计算;
(Ⅱ)猜想通项公式,并用数学归纳法证明。