(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左焦点为
,右焦点为
,直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点P,线段
的垂直平分线交
于点M,求动点M的轨迹
的方程;
(Ⅲ)过椭圆的焦点
作直线
与曲线
交于A、B两点,当
的斜率为
时,直线
上是否存在点M,使
若存在,求出M的坐标,若不存在,说明理由
如图,是半径为2,圆心角为
的扇形,
是扇形的内接矩形.
(Ⅰ)当时,求
的长;
(Ⅱ)求矩形面积的最大值.
在极坐标系中,直线
的极坐标方程为
是
上任意一点,点P在射线OM上,且满足
,记点P的轨迹为
。
(Ⅰ)求曲线的极坐标方程;
(Ⅱ)求曲线上的点到直线
距离的最大值。
如图,AB是圆O的直径,C,D是圆O上两点,AC与BD相交于点E,GC,GD是圆O的切线,点F在DG的延长线上,且。求证:
(Ⅰ)D、E、C、F四点共圆;(Ⅱ)
已知在
处取得极值。
(Ⅰ)证明:;
(Ⅱ)是否存在实数,使得对任意
?若存在,求
的所有值;若不存在,说明理由。
四边形ABCD的四个顶点都在抛物线上,A,C关于
轴对称,BD平行于抛物线在点C处的切线。
(Ⅰ)证明:AC平分;
(Ⅱ)若点A坐标为,四边形ABCD的面积为4,求直线BD的方程。