已知函数 .
(Ⅰ)设
,求
的单调区间;
(Ⅱ) 设
,且对于任意
,
.试比较
与
的大小.
设等差数列
的前
项和为
,且
,
.
(Ⅰ)求数列
的通项公式;
(Ⅱ)设数列
满足
,求
的前
项和
.
如图,四棱锥
中,
分别为
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:平面
平面
.
设函数
,且
的图象的一个对称中心到最近的对称轴的距离为
,
(Ⅰ)求
的值;
(Ⅱ)求
在区间
上的最大值和最小值.
某小组共有
五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如下表所示:
身高 |
1.69 |
1.73 |
1.75 |
1.79 |
1.82 |
体重指标 |
19.2 |
25.1 |
18.5 |
23.3 |
20.9 |
(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率
(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在
中的概率.