(本小题满分12分) 已知圆,点
,直线
.
(1) 求与圆相切,且与直线
垂直的直线方程;
(2) 在直线上(
为坐标原点),存在定点
(不同于点
),满足:对于圆
上任一点
,都有
为一常数,试求所有满足条件的点
的坐标.
在极坐标系下,已知圆O:和直线
:
.
(1) 求圆O和直线l的直角坐标方程;
(2) 当θ∈(0,π)时,求直线l与圆O公共点的一个极坐标.
在四棱锥中,底面
为矩形,
,
,
,
,
分别为
的中点.
(1) 求证:;
(2) 求证:平面
;
设函数.
(1) 解不等式;
(2) 求函数的最小值.
如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=,AF∶FB∶BE=4∶2∶1,若CE与圆相切,求线段CE的长.