某商场为促销设计两套方案:(1)全场九折;(2)购物100元摸彩球打折,8个红色和8个绿色的玻璃球放在一个盒子里,顾客任意摸出8个球,仅有抽出的红球、绿球个数相等时不打折,两者相差一个时打9折,两者相差2个或2个以上时打8折,问商场应选择哪种方案更有利可图?
在空间四边形ABCD中,AD=BC=,E、F分别是AB、CD的中点,EF=
求异面直线AD和BC所成的角。
设函数.
(Ⅰ)当时,判断函数
的零点的个数,并且说明理由;
(Ⅱ)若对所有,都有
,求正数
的取值范围.
已知椭圆过点
,且离心率为
.
(1)求椭圆的方程;
(2)为椭圆
的左右顶点,点
是椭圆
上异于
的动点,直线
分别交直线
于
两点.证明:以线段
为直径的圆恒过
轴上的定点.
如图,在三棱柱中,
,顶点
在底面
上的射影恰为点
,且
.
(Ⅰ)证明:平面平面
;
(Ⅱ)求棱与
所成的角的大小;
(Ⅲ)若点为
的中点,并求出二面角
的平面角的余弦值.
已知等比数列的公比
,
是
和
的一个等比中项,
和
的等差中项为
,若数列
满足
(
).
(Ⅰ)求数列的通项公式;(Ⅱ)求数列
的前
项和
.