甲、乙两容器中分别盛有两种浓度的某种溶液,从甲容器中取出
溶液,将其倒入乙容器中搅匀,再从乙容器中取出
溶液,将其倒入甲容器中搅匀,这称为是一次调和,已知第一次调和后,甲、乙两种溶液的浓度分别记为:
,
,第
次调和后的甲、乙两种溶液的浓度分别记为:
、
.
(1)请用、
分别表示
和
;
(2)问经过多少次调和后,甲乙两容器中溶液的浓度之差小于.
如图所示,空间中有一直角三角形,
为直角,
,
,现以其中一直角边
为轴,按逆时针方向旋转
后,将
点所在的位置记为
,再按逆时针方向继续旋转
后,
点所在的位置记为
.
(1)连接,取
的中点为
,求证:面
面
;
(2)求与平面
所成的角的正弦值.
如图所示,某建筑工地准备建造一间两面靠墙的三角形露天仓库堆放材料,已知已有两面墙、
的夹角为
(即
),现有可供建造第三面围墙的材料
米(两面墙的长均大于
米),为了使得仓库的面积尽可能大,记
,问当
为多少时,所建造的三角形露天仓库的面积最大,并求出最大值?
如图,一半径为的圆形靶内有一个半径为
的同心圆,将大圆分成两
部分,小圆内部区域记为环,圆环区域记为
环,某同学向该靶投掷
枚飞镖,每次
枚. 假设他每次必
定会中靶,且投中靶内各点是随机的.
(1)求该同学在一次投掷中获得环的概率;
(2)设表示该同学在
次投掷中获得的环数,求
的分布列及数学期望.
已知函数.
(1)当时,求函数
的单调区间;
(2)当时,函数
图象上的点都在
所表示的平面区域内,不等式
恒成立,求实数
的取值范围.