.如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点。
(Ⅰ)求证:EF∥平面SAD;
(Ⅱ)设SD = 2CD,求二面角A-EF-D的大小;
已知数列是等差数列,其前n项和为
(I)求数列的通项公式;
(II)设p、q是正整数,且p≠q.证明:.
(本小题满分15分)
已知函数的图象在
上连续不断,定义:
,
其中,表示函数
在
上的最小值,
表示函数
在
上的最大值.若存在最小正整数
,使得
对任意的
成立,则称函数
为
上的“
阶收缩函数”.
(1)若,
,试写出
的表达式;
(2)已知函数,
,试判断
是否为
上的“
阶收缩函数”,如果是,求出对应的
;如果不是,请说明理由;
(3)已知,函数
是
上的2阶收缩函数,求
的取值范围.
(本小题满分15分)已知椭圆的离心率为
,过
的直线与原点的距离为
(1)求椭圆的方程;
(2)已知定点,直线
与椭圆交于不同两点C,D,试问:对任意的
,是否都存在实数
,使得以线段CD为直径的圆过点E?证明你的结论
(本小题满分14分)
等差数列的前
项和为
,且
(1)求的通项公式
;
(2)若数列满足
且
求
的前
项和
本小题满分14分)
经市场调查,某旅游城市在过去的一个月内(以30天计),日旅游人数(万人)与时间
(天)的函数关系近似满足
,日人均消费
(元)与时间
(天)的函数关系近似满足
(1)求该城市的旅游日收益(万元)与时间
的函数关系式;
(2)求该城市旅游日收益的最小值(万元)