一个几何体的三视图如下图所示,其中主视图与左视图是腰长为6的等腰直角三角形,俯视图是正方形。
(Ⅰ)请画出该几何体的直观图,并求出它的体积;
(Ⅱ)用多少个这样的几何体可以拼成一个棱长为6的正方体ABCD—A1B1C1D1? 如何组拼?试证明你的结论;
(Ⅲ)在(Ⅱ)的情形下,设正方体ABCD—A1B1C1D1的棱CC1的中点为E, 求平面AB1E与平面ABC所成二面角的余弦值.
袋子A、B中均装有若干个大小相同的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率为p.
(1)从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止。
①求恰好摸5次停止的概率;
②记5次之内(含5次)摸到红球的次数为,求随机变量
的分布列及数学期望。
(2)若A、B两个袋子中的球数之比为1:2,将A、B中的球装在一起后,从中摸出一个红球的概率是,求p的值。
已知四棱锥的底面
是等腰梯形,
且
分别是
的中点.
(1)求证:;
(2)求二面角的余弦值.
已知函数.
(1)试问该函数能否在处取到极值?若有可能,求实数
的值;否则说明理由;
(2)若该函数在区间上为增函数,求实数
的取值范围.
在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如表:
分组 |
频数 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
合计 |
![]() |
(1)列出频率分布表,并画出频率分布直方图;
(2)估计纤度落在中的概率及纤度小于
的概率是多少?
(3)从频率分布直方图估计出纤度的众数、中位数和平均数.
已知的展开式的二项式系数和比
的展开式的系数和大992,求
的展开式中:①二项式系数最大的项;②系数的绝对值最大的项。