已知A、B、C是直线l上的三点,且|AB|=|BC|=6,⊙O′切直线l于点A,又过B、C作⊙O′异于l的两切线,设这两切线交于点P,求点P的轨迹方程.
(本小题满分14分)如图4,已知
中,
,
,
⊥
平面
,
、
分别是
、
的中点.
(1)求证:平面
⊥平面
;
(2)求四棱锥B-CDFE的体积V;
(3)求平面
与平面
所成的锐二面角的余弦值.
(本小题满分12分)下图是某市今年1月份前30天空气质量指数(AQI)的趋势图.
(1)根据该图数据在答题卷中完成频率分布表,并在图中作出这些数据的频率分布直方图;

(图中纵坐标1/300即
,以此类推)
(2)当空气质量指数(AQI)小于100时,表示空气质量优良.某人随机选择当月1日至10日中的某一
天到达该市,并停留2天,设
是此人停留期间空气质量优良的天数,求
的数学期望.
(本小题满分12分)已知函数
的最小正周期为
.
(1)求
的值;
(2)若
,
,求
的值.
(本小题满分13分)设
,函数
,函数
,
.
(Ⅰ)判断函数
在区间
上是否为单调函数,并说明理由;
(Ⅱ)若当
时,对任意的
, 都有
成立,求实数
的取值范围;
(Ⅲ)当
时,若存在直线
(
),使得曲线
与曲线
分别位于直线
的两侧,写出
的所有可能取值. (只需写出结论)
(本小题满分14分)设点
为椭圆
的右焦点,点
在椭圆
上,已知椭圆
的离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设过右焦点
的直线
与椭圆相交于
,
两点,记
三条边所在直线的斜率的乘积为
,求
的最大值.