游客
题文

在直角坐标平面上,O为原点,M为动点,.过点M作MM1轴于M1,过N作NN1轴于点N1.记点T的轨迹为曲线C,点A(5,0)、B(1,0),过点A作直线交曲线C于两个不同的点P、Q(点Q在A与P之间).
(Ⅰ)求曲线C的方程;
(Ⅱ)证明不存在直线,使得
(Ⅲ)过点P作轴的平行线与曲线C的另一交点为S,若,证明

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知
(Ⅰ)对一切恒成立,求实数a的取值范围;
(Ⅱ)当求函数()上的最小值.

如图,矩形ABCD内接于由函数图象围成的封闭图形,其中顶点C,D在上,求矩形ABCD面积的最大值.

已知函数.
(Ⅰ)求函数处的切线方程;
(Ⅱ)若函数上单调减,且在上单调增,求实数的取值范围;
(Ⅲ)当时,若,函数的切线中总存在一条切线与函数处的切线垂直,求的最小值.

设函数有极值.
(Ⅰ)若极小值是,试确定
(Ⅱ)证明:当极大值为时,只限于的情况.

若函数对任意的,均有,则称函数具有性质.
(Ⅰ)判断下面两个函数是否具有性质,并说明理由.
;②.
(Ⅱ)若函数具有性质,且),
求证:对任意
(Ⅲ)在(Ⅱ)的条件下,是否对任意均有.若成立给出证明,若不成立给出反例.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号