在直角坐标平面上,O为原点,M为动点,,.过点M作MM1⊥轴于M1,过N作NN1⊥轴于点N1,.记点T的轨迹为曲线C,点A(5,0)、B(1,0),过点A作直线交曲线C于两个不同的点P、Q(点Q在A与P之间).(Ⅰ)求曲线C的方程;(Ⅱ)证明不存在直线,使得;(Ⅲ)过点P作轴的平行线与曲线C的另一交点为S,若,证明.
(本小题满分13分)设(为实常数)。 (1)当时,证明:不是奇函数; (2)设是奇函数,求与的值; (3)求(2)中函数的值域。
已知. (1)当,且有最小值2时,求的值; (2)当时,有恒成立,求实数的取值范围.
已知p: ,q: ,若是的必要不 充分条件,求实数m的取值范围。
(本小题满分12分)设是定义在(-∞,+∞)上的函数,对一切均 有,且当时,,求当时,的解析式。
(本小题满分12分)已知集合A={x|a≤x≤a+3},B={x|x<-1或x>5}。 (1) 若A∩B=Φ,求a的取值范围; (2) 若A∪B=B,求a的取值范围。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号