已知函数在
处取得的极小值是
.
(1)求的单调递增区间;
(2)若时,有
恒成立,求实数
的取值范围.
已知函数
(1)求函数的最小正周期。
(2)求函数的最大值及
取最大值时x的集合.
已知函数.
(1)当时,求函数
在
上的值域;
(2)设,若存在
,使得以
为三边长的三角形不存在,求实数
的取值范围.
己知集合,
,
,若“
”是“
”的充分不必要条件,求
的取值范围.
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和个黑球(
为正整数).现从甲、乙两个盒内各任取2个球,若取出的4个球均为黑球的概率为
,求
(1)的值;
(2)取出的4个球中黑球个数大于红球个数的概率.
已知为单调递增的等比数列,且
,
,
是首项为2,公差为
的等差数列,其前
项和为
.
(1)求数列的通项公式;
(2)当且仅当,
,
成立,求
的取值范围.